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Abstract. The interface polaron states in a heterojunction are discussed by considering an energy-band
bending near the interface and the influence of an image potential. The ground state energy and the effective
mass of a polaron are variationally calculated. The numerical results for the GaAs/AlxGa1−xAs (x ≥ 0.3)
heterojunction are given. It is shown that even though the influences from bulk longitudinal optical (LO)
phonons are more important for the heterojunctions with lower Al composition, the contributions from
two branches of interface optical (IO) phonons are not negligible. For the heterojunctions with higher Al
composition, both the influences from LO phonons and two branches of IO phonons are important. The
band-bending plays an important role for the interface localization of polarons, but the influence of the
image potential is not essential.

PACS. 71.38.+I Polarons and electron phonon interactions – 73.40.Lq Other semiconductor-to-
semiconductor contacts, p-n junctions, and heterojunctions – 63.20.kr Phonon-electron and phonon-phonon
interactions

1 Introduction

The appearance of artificially fabricated semiconductor
heterojunctions and quantum wells brought about a fast
development for modern electronic and photo-electronic
devices. To clarify, in physics, the novel phenomena in
these materials due to the presence of interfaces may
give a significant impetus to their application. The po-
laron problems in semiconductor heterostructures have at-
tracted many author’s attentions in recent years, owing to
the establishment of the detailed interaction mechanism
between electrons and optical phonons in layered mate-
rials [1–5]. It has been found that the influence of inter-
face optical (IO) phonons on electron states is important
for quantum wells with narrow widths [6,7]. The magnet-
phonon resonance results in single GaAs/AlxGa1−xAs het-
erojunctions [8] demonstrated that the frequencies of the
optical phonons coupling with electrons lower than that
of the bulk longitudinal optical (LO) phonons in GaAs.
This may indicate that the presence of the IO phonons
and their interaction with the electrons should be taken
into account in considering the heterojunction problems.

On the other hand, semiconductor heterojunctions ex-
hibit an abrupt discontinuity in the local band structure
and electrons from the higher bandedges tend to accu-
mulate in the lower bandedges at the interfaces. For ex-
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ample, in a GaAs/AlxGa1−xAs heterojunction, the elec-
trons transfer from the donor energy levels of wide forbid-
band AlxGa1−xAs into the narrow forbid-band GaAs.
This Hartree-Fock potential brings about a energy band
bending and form a potential well binding electrons to
the interface in GaAs, which form a so-called quasi 2D
electron gas (2DEG) at equilibrium states [9]. When the
concentration of the electrons near the interface is not
large enough, one can study the single polaron problem
by neglecting the screening effect [10].

The previous works studied the interface polaron prob-
lems involving the effects from both the bulk LO- and the
IO-phonon modes. The early works treated the electron
IO-phonon interactions by using a single-branch effective
IO phonon model [11]. Lately, Pokatilov et al. have investi-
gated surface polarons at the contact of two polar crystals
in detail [12]. They considered the interactions between
the electron and two branches of SO-phonon modes be-
sides the bulk LO-phonon and calculated the ground-state
energies and the effective masses of the surface polarons in
a weak coupling approximation. Some other authors inves-
tigated these problems by using a quasi two-dimensional
(2D) [13,14] or pure 2D [15,16] model, which include the
interactions between the electrons and the two branches of
IO phonon modes. A 2D model was also adopted to study
the polaron ground states and the polaron cyclotron res-
onance for GaAs/AlAs heterojunction [16]. The results
shown that both the two branches of IO phonon modes
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should be considered to investigate the properties of in-
terface polarons.

The quasi 2D results for the electrons moving in AlAs,
under the influence of a strong electric field near the
GaAs/AlAs interface [13], indicated that the bulk LO
phonons and IO phonons make competitive contribution
to the polarons. The studies improves the previous single-
branch effective phonon method. However, most of them
only attributed the interface localization of the polarons
to the image potential (IP) and electron-phonon interac-
tion, without taking the band-bending potential near the
interface into account.

In this paper a detail investigation for the interface
polarons in a heterojunction is presented. Out of the pre-
vious works an energy-band bending and induced intrin-
sic interface states of electrons are considered together
with the influences of the image potential and electron-
phonon interaction. The ground-state energy and effective
mass of an interface polaron are variationally calculated
by using an LLP-like method [13]. As an example we dis-
cuss the GaAs/AlxGa1−xAs system. A triangular poten-
tial is used here to describe the bent energy-band in GaAs
since the electrons can be presumed in the lowest subband
for the polaron ground state [9,17]. Contrarily the image
potential for this system is repulsive. In the other side
of the interface, an infinite barrier into AlxGa1−xAs at
the interface are also considered. The interactions of the
electrons with both of the half-space bulk LO phonons
and two branches of IO phonon modes are included in
consideration of the electron-phonon coupling. An effec-
tive LO phonon mode approximation [18,19], which has
been proved to be reasonable for ternary mixed crystals
with the weak electron-LO phonon coupling such as the
AlxGa1−xAs material [19] and also used to investigate the
electron IO-phonon interaction in the GaAs/AlxGa1−xAs
quantum well. To sum the above competitive influences
up, the slow moving electrons in a GaAs/AlxGa1−xAs het-
erojunction still can be confined near the interfaces in
GaAs. The numerical variation about the ground-state
energies and effective masses is performed for the prac-
tically realizable GaAs/AlxGa1−xAs heterojunction with
composition of x ≥ 0.3. It is found that both the contri-
butions from the bulk LO-phonons and the two branches
of IO-phonons to the polaronic energies are important for
the heterojunctions with higher Al composition, specially
for the extreme case of x = 1. The influences of the IO
phonons can not be neglected, even for the heteojunctions
with lower Al composition, where the contribution from
bulk LO phonons is more important.

2 Model and variational calculation

Let us consider a heterojunction consisting of two semi-
infinite polar semiconductors denoted respectively by ma-
terials “1” filling in the half space of z < 0 and “2” in
z > 0 with the interface in the x−y plane (z = 0). As
mentioned above, the previous authors have discussed the
surface or interface polarons bound by an image potential
and electron-phonon interaction [11–16] without including

the intrinsic interface states caused by a band-bending po-
tential. However the image potential sometimes, such as
in the GaAs/AlxGa1−xAs heterojunction, appears as re-
pulsive and detrimental to localize of the polarons on the
interface in GaAs. Here we deal with a real heterojunc-
tion, where is an energy-band bending near the interface
in material “1”, which localizes the electrons on the in-
terface whereas an image potential tend to repelling it
moving far from the interface. On the other hand, the po-
tential barrier height on the interface can be presumed
as infinite for electrons in the lowest subband which cor-
responds to the polaron ground states. Considering the
effects of half space bulk LO phonons and IO phonons, we
write the Hamiltonian of the single electron and phonon
system as

H = H1 +H2, (1)

where

H1 =
p2
z

2m
+ V (z) +

e2 (ε∞2 − ε∞1)

4ε∞1 (ε∞2 − ε∞1) z
(1a)

and

H2 =
p2
t

2m
+
∑

~ωL1a
+
k ak +

∑
q, σ

~ωσb+qσbqσ

+
∑
k

[
B sin (kzz)

k
e−ikt·ρa+

k + h.c.

]
+
∑
qσ

[
Gσ
√
q
e−iq·ρe−q|z|b+qσ + h.c.

]
· (1b)

Here r = (ρ, z), p = (pt, pz), in which ρ and pt are the
x−y plane components of the electron coordinates and
momenta and z and pz the z-component, respectively.m is
the band mass of the electron in material “1”. A triangular
potential V (z) is adopted to describe the potential well
caused by the energy-band bending as

V (z) =

{
−eFzz z ≤ 0,

∞ z > 0.
(1c)

where Fz is chosen as a typical value Fz = 20 kV/cm
for GaAs in the GaAs/AlxGa1−xAs heterojunction sys-
tem. ε∞1 and ε∞2 are respectively the optical dielec-
tric constants of the media “1” and “2”. a+

k (ak) denotes
the creation (annihilation) operator of a half-space bulk
LO phonon with wave-vector k = (kt, kz) and frequency
ωL1, while b+qσ(bqσ) the corresponding operator for an IO
phonon with a 2D wave-vector q and frequency ωqσ. σ = +
and σ = − represent respectively the two branches of IO
phonon modes with the higher and lower frequencies:

ω± =
b±
√
b2 − 4ac

2a
· (2)

with

a = ε∞1 + ε∞2, (2a)

b = ε∞1

(
ω2
L1 + ω2

T2

)
+ ε∞2

(
ω2
L2 + ω2

T1

)
, (2b)

c = ε∞1ω
2
L1ω

2
T2 + ε∞2ω

2
L2ω

2
T1, (2c)
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+
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(7)

where ε0λ(λ = 1, 2) is the static dielectric constant and
ωTλ the transverse optical (TO) phonon frequency of ma-
terial “λ ”, respectively.

The last two terms in H2 denote the interaction be-
tween an electron and bulk LO and IO phonons respec-
tively in which the parameters B and Gσ are given by

B = −i

[
4πe2~ωL1

V

(
1

ε∞1
−

1

ε01

)]1/2

(3)

and

Gσ(k) = i
(
δ2
1 + δ2

2

)−1/2
(

2π~e2

Sωσ

)1/2

, (4)

where

δλ =
(ε0λ − ε∞λ)

1/2
ωTλ

(ω2
Tλ − ω

2
σ)

(λ = 1, 2), (4a)

In equations (3, 4), V and S refer to the volume of the
medium “1” and the area of the interface, respectively.

Performing two unitary transformation

U1 = exp

[
i

~

(
Pt − ~

∑
k

kta
+
k ak − ~

∑
qσ

qb+qσbqσ

)
· ρ

]
, (5)

where Pt is the eigenvalue of the total momentum opera-
tor and

U2 = exp

[∑
k

(
fke
−ikzza+

k + h.c.
)

+
∑
qσ

(
gqσb

+
qσ + h.c.

)]
·

(6)

The Hamiltonian H2 in equation (1) is then transformed
to be:

See equation (7) above

where the high order terms of a+
k , ak and b+qσ, bqσ have

been neglected because they have no contribution to the
expectation value for the zero phonon states.

In equation (7), fk and gqσ will be determined by
the variational minimization with respect to the polaron
ground state |ψ〉 which is chosen as the product of the zero
phonon state |0〉 and the variational wave function |φ〉 of
the electron in z-direction:

|ψ〉 = |φ〉|0〉 = |φ〉
∏
kqσ

|0k〉|0qσ〉. (8)

The Hamiltonian H2 in equation (1) changes nothing after
the transformations. The polaron variational energy then
can be written as

E = 〈ψ|U−1
2 U−1

1 HU1U2|ψ〉 = E1 +E2, (9)

with
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The displacement amplitudes fk and gqσ read respectively

fk =
φB(kz)

~ωL1 +
~2k2

t

2m
−
~kt ·Pt

m
(1− η)

, (12)

and gqσ =
φG(σ, q)

~ωσ +
~2q2

2m
−
~q ·Pt

m
(1− η)

, (13)

where

φB(kz) = 〈φ|
B exp (ikzz) sin (kzz)

k
|φ〉, (12a)

and φG(σ, q) = 〈φ|
Gσ exp (−q|z])

√
q

|φ〉 · (13a)

In the above calculations, the electron is considered to
be fixed on the lowest subband state (ground state) in
the potential well of bending-band in z-direction, since
the probabilities of the subband transitions due to the
electron-phonon interaction are second-order small.

In equations (12, 13) the parameter η can be derived
by using the following relation

ηPt =
∑
k

~kt|fk|2 +
∑
qσ

~q|gqσ|2. (14)

It gives

η =

∑
σ∆mIσ +∆mLO

1 +
∑
σ∆mIσ +∆mLO

, (15)

where∆mIσ and ∆mLO are related respectively to IO and
LO phonons and defined as follows

∆mIσ =
2~2

m

∑
q

|φG(σ, q)|2q2 cos2 ϑ(
~ωσ +

~2q2

2m

)3 , (15a)

and

∆mLO =
2~2

m

∑
k

|φB(kz)|
2k2
t cos2 ϑ(

~ωL1 +
~2k2

t

2m

)3 · (15b)

In equation (15) ϑ denotes the angle between the in-plane
wave-vectors kt or q and the total momentum Pt. Insert-
ing equations (12, 13, 15) into (11), we finally obtain

E2 =
P2
t

2m∗
−
∑
σ

EIσ −ELO

=
P2
t

2m∗
−
∑
σq

|φG(σ, q)|2

~ωσ +
~2q2

2m

−
∑
k

|φB(kz)|
2

~ωL1 +
~2kt

2

2m

+O(P4
t ). (16)

The last term in equation (16) stands for the higher order
terms over fourth power of the total momentum Pt, which
can be neglected for the slow-moving polarons. m∗ is the
polaron effective mass along the direction parallel to x−y
plane and given by

m∗ = m
(

1 +
∑
σ

∆mIσ +∆mLO

)
. (17)

The trial wave-function |φ〉 for the interface state of the
electron is chosen as following form [9,13]

|φ〉 =

{
−
(
β3/2

)1/2
z exp (βz/2), z ≤ 0

0, z > 0
(18)

where β is a variational parameter which will be deter-
mined by minimizing the expectation value of the polaron
energy E in equation (9).

Changing the summations in equations (15, 16) into
integrals by using the following relations∑

k

→
V

(2π)3

∫
dk,

∑
q

→
S

(2π)2

∫
dq,

the polaron variational energy terms E1 and E2 can be
rewritten as

E1 =
~2β2

8m
+

3eFz
β
−

βe2 (ε∞2 − ε∞1)

8ε∞1 (ε∞2 + ε∞1)
, (19)
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∑
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ασ~ωσ
∫ ∞

0

dq
uσβ

6

(q + β)6(u2
σ + q2)
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∫ ∞
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∫ ∞
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6ρ
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×

[
4k2

(
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)2
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1
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,

where
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(
1

ε∞1
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ε01

)
me2

~2uL1
, (20a)

and ασ =
2me2(

δ2
1 + δ2

2

)
~2ω2

σuσ
, (20b)

are respectively the dimensionless coupling constants of
the interaction between the electron and half space bulk
LO phonons in material “1” and that between the electron
and the σth branch of the IO phonon modes.

uL1 =

(
2mωL1

~

)2

, and uσ =

(
2mωσ
~

)2

.

In the similar way, equation (17) can be reduced to be
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×

[
4k2

(
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)2]
.

(21)
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Table 1. Parameters used in the numerical calculation. Energy
is in unit of meV and mass in unit of the bare electron.

GaAs AlxGa1−xAs

m 0.067
~ωLO 36.25 36.25 + 1.83x + 17.12x2 − 5.11x3

~ωTO 33.29 33.29 + 10.70x + 0.03x2 − 0.86x3

ε0 13.18 13.18 − 3.12x
ε∞ 10.89 10.89 − 2.73x

Fig. 1. Contributions (in unit of meV) of bulk LO phonons
and two branches of IO phonon modes to the polaron ground
state energies as functions of the Al composition x for
GaAs/AlxGa1−xAs heterojunction.

In equations (20, 21), the last two terms describe respec-
tively the contribution from the IO and bulk LO phonons.

3 Numerical results and discussion

The energy of the polaron should be calculated by a nu-
merically variation of the energy (Eq. (9)) for specific sys-
tems. As an example we consider the GaAs/AlxGa1−xAs
heterojunction, where GaAs is refereed as material “1”
and AlxGa1−xAs as material “2”. We have performed the
numerical variation for the practically realizable system
with the Al composition x ≥ 0.3. An effective phonon
mode approximation for the electron-LO-phonon interac-
tion in the ternary mixed crystal AlxGa1−xAs is adopted
here to obtain the IO phonon modes [18,19]. The param-
eters used in the computations are listed in Table 1 [18].

Inserting equations (19, 20) into (9) and performing
the numerical variation, one can obtain the ground state
energies of interface polarons. We choose Fs = 20 kV/cm

Fig. 2. Contributions (in unit of the bare electron mass) of
bulk LO phonons and two branches of IO phonon modes to
the polaron effective mass as functions of the Al composition
for GaAs/AlxGa1−xAs.

for the triangular potential describing the energy-band
bending in GaAs. The variational results show that the
polaron average distance from the interface is around 50 Å
which is in good agreement with the result of electron dis-
tribution given by Ando [9]. This indicates that our ap-
proximation is reasonable. The phonon contributions to
the polaron ground state energies display in two aspects:
(1) self-trapping terms, i.e. the last two terms in equa-
tions (20), and (2) mass renormalization (Eq. (21)). The
numerical results for the two kinds of contributions are
shown in Figures 1 and 2.

From equation (16), the self-trapping energy can be
written as the summation of the contributions from three
different branches of phonon modes

Etotal = EI+ +EI− +ELO,

whose curves as functions of the Al composition x are
plotted in Figure 1. It is seen that the contribution EI+
from the IO phonon mode of frequency ω+ decreases with
increasing the Al composition x at beginning. It reaches a
minimum value around x = 0.4 then increases with x, and
finally tends to the maximum when x = 1. On the con-
trary, the contribution EI− from the mode of ω− increases
monotonously with increasing x. There is a intersection of
EI+ and EI− in the middle range of x. It is caused by
α+ < α−. The contribution from bulk LO phonon mode
keeps independent on x because the electrons do not pen-
etrate into the AlxGa1−xAs layers in our model. The typi-

cal values of the ratio
∑
σ

EIσ/ELO of the total IO-phonon

contribution to the LO-phonon contribution are 0.207 for
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x = 0.3 and 0.572 for x = 1. This indicates that the con-
tributions of IO phonons to the polaron ground-state en-
ergies are comparable with that of LO phonons for higher
Al composition AlxGa1−xAs systems. The influences of IO
phonons can not be neglected even for the lower Al com-
position cases, although the bulk LO phonons make more
important contributions. It follows that the two branches
of IO phonon modes should be considered in dealing with
the interface states of electrons as pointed out by our pre-
vious papers [15,16].

The relative shifts of the polaronic effective mass due
to the influence of phonons can be written as (see Eqs. (17,
21))

∆mtotal = ∆mI+ +∆mI− +∆mLO,

where the three terms denote the contributions from two
branches of IO phonons with frequencies ω+ and ω− and
a bulk LO phonon branch with frequency ωLO. The com-
puted results as functions of x are given in Figure 2. The
characteristics of the curves of ∆mI+, mI−, mLO and
∆mph are respectively similar to that of the correspond-
ing curves in Figure 1. However, the IO phonon influence
on the polaron effective mass is negligible weak (about

0.1 ∼ 0.3%) and the ratio
∑
σ

∆mIσ/∆mLO of the IO-

phonon influence to the LO-phonon influence, such as val-
ues 0.101 for x = 0.3 and 0.230 for x = 1, is also smaller
than that on the self-trapping energy (Fig. 1). The vari-
ations of the contributions of IO phonons to the relative
shift of the effective mass with the composition x are also
gentler than that in Figure 1. In short the IO phonon in-
fluence on the effective mass of the interface polaron is not
important.

Moreover the numerical result also indicates that the
influence of image potential on the polaronic states is very
weak. If the band-bending potential is removed, the po-
laron may move into the inside of GaAs far from the inter-
face and the result approaches approximately to the result
of three dimensional polarons. At the limit of β →∞, our
model gives the result of 2D interface polarons.

In conclusion, we have varationally investigated the
interface polaron problem in a heterojunction system.
Out of the previous works a bending energy band near
the interface, which is verified essential to bind the elec-
tron in the vicinity of the interface, is considered to-
gether with the influences of image potential and electron-
phonon interaction. A triangular potential is reasonably
adopted to describe band bending potential well. The bi-
nary crystal-ternary mixed crystal heterojunction system

GaAs/AlxGa1−xAs is concretely considered and an effec-
tive phonon mode approximation is used to describe the
optical phonon modes in a ternary mixed crystal. The
computed result of the ground state energy and the effec-
tive mass of the interface polaron for GaAs/AlxGa1−xAs
heterojunction shows that the influence of the IO phonons
is not negligible, in special for the higher Al composition
cases both of the bulk LO and IO phonons is important. In
addition we have used an infinite barrier on the interface
which will be improved to consider the wave functions of
the electrons penetrating through the interface later on.
This may enhance the influence of interface phonons.

This work was supported by the National Natural Science
Foundation (Project 19474027) of P.R. China and the Found
for Excellent Young University Teachers of the State Education
Commission of China.
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